Received: September 9, 1975

ADDITIONEN UND CYCLOADDITIONEN AN HEXAFLUORACETONAZIN [1]

K. BURGER, S. TREMMEL und H. SCHICKANEDER

Organisch-Chemisches Institut der Technischen Universität D- 8000 München 2, Arcisstraße 21 (Germany)

ZUSAMMENFASSUNG

Nucleophiles (alcohols, thiols, and amines) react with hexafluoroacetone azine to give 1:1 adducts, which are ascribed a hydrazone structure on basis of the spectroscopic data. From the reaction of hexafluoroacetone azine and diazomethane 1.1'-bicycloamines are obtained. I.r., ¹H-n.m.r., ¹⁹F-n.m.r. and mass spectral data of the new compounds are discussed.

EINLEITUNG

Azine stellen eines der wenigen 1,3-Heterodien-Systeme dar, für die 1.4-, 1.3- und 1.2-Additionen zu erwarten sind, wobei der 1.3- sowie der 1.2-Additionsprozeß am selben Molekül unter Umständen zweimal erfolgen kann (1.3,2.4- bzw. 1.2,3.4-Addition). Es gelingt alle aufgeführten Reaktionstypen am Hexafluoracetonazin (I) [2,3] zu verwirklichen. (I) reagiert mit Chlormonofluorid unter 1.4-Addition [4], mit Kohlenstoffmehrfachbindungssystemen unter "criss-cross"-Cycloaddition (1.3,2.4-Addition) [5-9], wobei es in einer Reihe von Fällen gelingt die 1:1 Zwischenstufe (1.3-Addition) zu isolieren. Ihr 1.3-dipolarer Charakter [6,9] ist zweifelsfrei durch Röntgenstrukturanalyse bewiesen [10]. Inamine [11] wie auch Isonitrile [12] werden von (I) bereits unterhalb von -20°C unter 1.2-Addition und Bildung von Vierringheterocyclen aufgenommen. Im folgenden berichten wir über das Reaktionsverhalten des Hexafluoracetonazins (I) gegenüber Nucleophilen sowie 1.3-Dipolen.

ERGEBNISSE UND DISKUSSION

Nucleophile wie Alkohole, Mercaptane und Amine, selbst im Überschuß angeboten, werden von Hexafluoracetonazin (I) unter Bildung von 1:1 Addukten aufgenommen. Die erhaltenen Verbindungen (II-IV) zeigen IR-Absorptionen im Bereich von 3340-3380 und 1620-1625 cm⁻¹, die wir einer NH- und einer C=N-Valenzschwingung zuordnen. Die ¹⁹F-NMR-Spektren lassen jeweils drei Signale für die vier im Molekül vorhandenen Trifluormethylgruppen erkennen. Während zwei an ein sp³-. Kohlenstoffatom gebundene Trifluormethylgruppen magnetisch äquivalent sind, treten die beiden anderen jeweils als Quartett mit einer Kopplungskonstante ⁴J_{FF} = 5.6 - 6.0 Hz im Bereich von d = -10.0 bis -15.0 ppm in Resonanz. Das bei tieferem Feld liegende Signal zeigt eine zusätzliche Kopp-

472

lung ${}^{5}J_{\rm HF}$ von 2.6 - 3.0 Hz. Die Meßdaten sprechen für das Vorliegen einer $(CF_{3})_{2}C=N-NH$ -Funktion in den 1:1 Addukten und somit für die Konstitution im Sinne der Formeln (II-IV). In einer Reihe ähnlicher Verbindungen wurde das bei tieferem Feld liegende Signal der syn-plazierten Trifluormethylgruppe zugeordnet [13].

Die Ergebnisse der Massenspektrometrie stehen mit den Strukturvorschlägen (II-IV) im Einklang. Repräsentativ sei das Zerfallsmuster von (IIa) aufgeführt: $[M]^+$ (360); $[M-F]^+$ (341); $[M-OR]^+$ (329); $[M-HOR]^+$ (328); $[M-F-HF]^+$ (321); $[C_6F_{11}N_2]^+$ (309); $[M-CF_3]^+$ (291); $[M-CF_3-OR]^+$ (260); $[(CF_3)_2COR]^+$ (181); $[(CF_3)_2CHN_2]^+$ (179); $[C_3F_6N_2]^+$ (178); $[(CF_3)_2CO]^+$ (166); $[C_3F_5N_2]^+$ (159); $[C_3F_5O]^+$ (147); $[C_3F_5]^+$ (131); $[CF_3CO]^+$ (97); $[CF_3CNH]^+$ (96); $[CF_3]^+$ (69). Die Verbindungen (II-IV) sind größtenteils thermisch nicht stabil. Als Zerfallsreaktion wurde, neben noch nicht aufgeklärten Umlagerungen, dominierend die Retro-Reaktion festgestellt.

Hydrazone des Hexafluoracetons wurden bisher in erster Linie über das Hexafluoracetonimin [14] oder durch einen Additions-/Eliminierungsprozeß direkt aus Hexafluoraceton hergestellt [15].

ΓΛ	
Verbindungen	
dargestellten	
der	
Ŧ	
¹⁹ F-NMR-Daten	
pu	
¹ н- с	
-	
Tabelle	

Verb.	64	HN	(cF ₃) ₂ c($(cF_{j})_{2}c=N-$
IIa	сн ₃ 3.64 (n. 0.8) 3н	7.55 (breit) 1H	-3.1 (breit) 6F	-11.2 (m, breit) 3F -13.9 (m, breit) 3F
dII	с ₂ Н ₅ 1.31 (t. 7.0) 3н 3.90 (q. 7.0) 2н	7.58 (breit) 1H	-2.5 (s) 6F	-11.2 (q, 5.7) 3F -13.8 (qq, 5.7, 2.6) 3F
IIc	n-c ₃ H ₇ 0.96 (t, 7.2) 3H 1.38-2.06 (m) 2H 3.78 (t, 6.0) 2H	7.57 (breit) 1H	-2.5 (s) 6F	-11.0 (m, breit) 3F -13.5 (m, breit) 3F
IId	i-c ₃ H ₇ 1.28 (d. 6.2) 6H 4.40 (h. 6.2) 1H	7.59 (breit) 1H	-2.5 (s) 6F	-11.4 (q, 5.7) 3F -14.0 (qq, 5.7, 2.6) 3F
IIe	сН ₂ СН ₂ ОН 3.04 (s) 1Н 3.63-4.16 (m) 4н	8.45 (breit) 1H	-2.8 (s) 6F	-11.7 (q, 5.7) JF -13.8 (qq, 5.7, 2.6) JF
IIIa	C ₂ H ₅ 1.29 (t, 7.5) 3H 2.94 (q, 7.5) 2H	7.57 (breit) 1H	-6.3 (s) 6F	-10.2 (q, 6.0) JF -12.6 (qq, 6.0, 2.9) JF
*) 19 ₁ au	F-NMR-Spektren mit den fgenommen.	l Gerät Teol C 60 HL	, Trifluoressigsäu	ire als externer Standard,

qIII	n-C ₄ H ₉ 0.77-1.17 (m) 3H 1.24-1.97 (m) 4H 2.91 (t, 7.0) 2H	7.50 (breit) 1H	-7.7 (s) 6F	-11.7 (q, 6.0) 3F -14.2 (qq, 6.0, 2.9) 3F
LIIC	n-c ₆ H ₁₃ 0.68-1.08 (m) 3H 1.13-1.93 (m) 8H 2.90 (t, 7.0) 2H	7.50 (breit) 1H	- 8.1 (s) 6F	-12.2 (q, 5.7) JF -14.6 (qq, 5.7, 2.9) JF
IIId	CH ₂ C ₆ H ₅ 4.08 (s) 2H 7.33 (s) 5H	7.35-7.72 1н	-7.8 (s) 6F	-11.8 (q, 5.7) <i>3</i> F -14.0 (qq, 5.7, 3.0) <i>3</i> F
IIIe	CH ₂ COOH 3.78 (s) 2H 9.66 (s) 1H	8.21 (breit) 1H	-9.0 (s) 6F	-12.2 (q, 6.0) JF -14.5 (qq, 6.0, 2.6) JF
JIII	с ₆ Н ₅ 7.07-7.85 (m) 5Н	7.07-7.85 1Н	-8.2 (s) 6F	-12.0 (q, 5.7) JF -14.5 (qq, 5.7, 2.9) JF
IVa	H, CH ₂ C ₆ H ₅ 2.61 (t, 6.2) 1H 3.95 (d, 6.2) 2H 7.39 (s) 5H	7.50 (breit) 1H	-3.8 (s) 6F	-12.2 (q, 5.7) JF -14.2 (qq, 5.7, 2.7) JF
qVI	(сн ₂) ₄ 0 2.83-3.17 (m) 4н 3.59-3.88 (m) 4н	7.08 (breit) 1H	-10.2 (s) 6F	-12.4 (q, 5.8) JF -14.9 (qq, 5.8, 2.6) JF

Hexafluoracetonazin (I) vermag zwei Äquivalente einer 1.3dipolaren Spezies (z.B. Diazomethan) an die Positionen 1.2,3.4 unter Bildung des 1.1'-Bicycloamins (VI) zu addieren. Wird der 1.3-Dipol im Unterschuß eingesetzt, kann das 1:1 Addukt (V) erhalten werden. Die Isolierung der Zwischenstufe macht auch die Synthese unsymmetrischer 1.1'-Bicycloamine möglich [16].

Die N=N-Valenzschwingung in der Verbindung (VI) liegt bei 1585 cm⁻¹; die Lage des Signals für die Methylenprotonen bei $\delta = 5.0$ ppm ist in guter Übereinstimmung mit früher beschriebenen Ergebnissen [17, 18]. Im ¹⁹F-NMR-Spektrum für das 1.1'-Bis[5,5-bis(trifluormethyl)-1.2.3-triazolin-(2)] (VI) werden bei Raumtemperatur zwei Signale gefunden, deren Koaleszenz bereits bei 35°C erreicht werden kann [19].

In Substanz zum Schmelzpunkt erhitzt zersetzt sich (VI) explosionsartig [20].

EXPERIMENTELLER TEIL

Die angegebenen Schmp. sind nicht korrigiert. Die ¹H-NMR-Spektren wurden mit dem Varian-Gerät A 60 in CDCl₃ (TMS als innerer Standard), die ¹⁹F-NMR-Spektren mit einem Jeol-Gerät C 60 HL (Trifluoressigsäure als äußerer Standard), die Massenspektren mit dem Gerät MS 9 von AEI bei einer Elektronenenergie von 70 eV aufgenommen.

Umsetzung von Hexafluoracetonazin mit Nucleophilen

3.28 g (10 mmol) Hexafluoracetonazin werden mit 10-20 mmol eines Nucleophils in Substanz oder in Äther als Lösungsmittel unter den in Tabelle 2 angegebenen Reaktionsbedingungen umgesetzt. Die Reinigung der Produkte erfolgt durch fraktionierte Vondensation oder Destillation. Die Konstanten der Verbindungen sind in Tabelle 2 zusammengefaßt.

1.1'-Bis[5.5-bis(trifluormethyl)-1.2.3-triazolin-(2)] (VI)

3.28 g (10 mmol) Hexafluoracetonazin werden mit einem 3bis 4-fachen Überschuß an Diazomethan in Äther 12 h bei -30° C und anschließend 3 d bei Raumtemperatur stehen gelassen. Das nach dem Abdestillieren des überschüssigen Diazomethans und des Lösungsmittels zurückbleibende Rohprodukt wird aus Chloroform umkristallisiert. Ausb. 2.0 g (48 %) vom Schmp. 96°C (unter Zersetzung).- IR (KBr): 1585 cm⁻¹.- ¹H-NMR (CDCl₃): δ = 5.0 ppm.- ¹⁹F-NMR (Aceton): δ = -6.1 (breit`, -7.1 (breit). $C_{8}H_4F_{12}N_6$ (412.1) Ber. C 23.32 H 0.98 N 20.39 Gef. C 23.42 H 1.18 N 20.76

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Untersuchungen.

477

Tabelle 2.	Ausbeuten,	Siede-	• MZQ	Schmelzpunkte,	IR-	nnd	elementaranalytische	Daten
	Verbindung	en II-IV						

Verb.	ж	Reaktions- temperatur Zeit	Ausb. (%)	Siede- bzw. Schmelzpunkt	IR cm ⁻¹	Summenformel (MolMasse)	Analysen C H N ber./gef.
IIa	сн _Э	-10°C 3h	55	20 ⁰ c/12	3370 1622 ^a)	с ₇ н ₄ F ₁₂ N ₂ 0 (360.1)	23.35 1.12 7.78 23.27 1.16 8.23
qII	c2 ^{H5}	0°C 3h	62	21-22 ⁰ C/12	3370 1622 ^a)	с ₈ Н6 ^F 12 ^N 20 (374.1)	25.68 1.62 7.49 25.69 1.48 7.66
IIc	n-c _{3H} 7	40°C°) 15h	39	33°c/12	3370 1622 ^{a)}	c ₉ H ₈ F ₁ 2 ^N 20 (388.2)	27.62 1.88 7.51 27.62 1.88 7.51
IId	i-c _{3H7}	40°C°) 2d	43	32 -33° C/12	3380 1625 ^a)	c9 ^H 8F ₁ 2 ^N 20 (388.2)	27.85 2.08 7.22 27.82 2.09 7.33
alle	сн ₂ сн ₂ он	60°C°) 10d	55	33°c/0.05	3140- 3500 1620 ^a)	^C 8 ^H 6 ^F 12 ^N 2 ⁰ 2 (390.1)	24.63 1.55 7.18 24.17 1.62 7.19
IIIa	c2 ^{H5}	80°C°) 14d	0†7	41°C/12	3360 1620 ^a)	с ₈ н ₆ F ₁₂ N2 ^S (390.2)	24.63 1.55 7.18 24.82 1.66 6.88
qIII	n-c4H ₉	60-70°C°) 3d	48	21 ⁰ c/0.01	3358 1620 ^a)	$^{C_{10}^{H_{10}F_{12}N_{2}S}}_{(418.2)}$	28.72 2.41 6.70 28.78 2.75 6.96

der

570 C ₁₂ H ₁₄ F ₁₂ N ₂ S 32.30 3.16 6.28 522 ^a) (446.3) 32.39 3.67 6.65	560 C ₁ ³ H ₈ F ₁ 2 ^N 2 ^S 34.57 1.78 5.19 520 ^{a)} (452.3) 34.67 1.83 6.29	230 °5 ^{H4F} 12 ^N 2 ⁰ 2 ^S 22.87 0.96 6.67 520 ^{b,d)} (420.2) 23.00 1.24 6.84	560 C ₁₂ H ₆ F ₁₂ N2 ^S 32.89 1.38 6.39 520 ^{a)} (438.2) 32.38 1.34 6.17	560 C ₁₃ H ₉ F ₁₂ N ₃ 35.88 2.08 9.65 520 ^{a)} (435.2) 35.82 2.16 9.69	340 C ₁₀ H ₉ F ₁₂ N ₃ 0 28.93 2.19 10.12 520 ^b) (415.2) 29.06 2.13 10.56
27 ⁰ C/0.01 3	36-37 ⁰ c/0.01 3 1	60°C	21 ⁰ c/0.01 7	38 ⁰ c/0.05 25-26 ⁰ c 1	50 ⁰ C
45	58	30	51	52	70
60-70°C°) 8d	80-90 [°] C 2d	20 ⁰ C 10d	80-90°C 2d	20 ⁰ c 2h	-30°C 1h
n-c ₆ H ₁₃	CH2C6H5	сн2соон	c _{6H5}	н сн ₂ с ₆ н ₅	сн ₂ сн ₂ о
IIIc	TII d	IIIe	JIII	IVa	IVb

IR-Spektren mit dem Perkin-Elmer-Gerät Infracord als Film^a) bzw. in ${\tt CCl}_4^{\tt b)}$ aufgenommen. c) Die Reaktion wurde im Einschlußrohr durchgeführt.

d) 1698 cm⁻¹ (µC=0).

LITERATUR

- 1 Reaktionen mit Hexafluoracetonazin, 11. Mitteil.- 10. Mitteil.: K. Burger, H. Schickaneder und J. Elguero, Tetrahedron Lett. <u>1975</u>, 2911.
- 2 W.J. Middleton und C.G. Krespan, J. Org. Chem. 30, 1398 (1965).
- 3 K. Burger, J. Fehn und W. Thenn, Angew. Chem. <u>85</u>, 541 (1973); Angew. Chem., internat. Edit. 12, 502 (1973).
- 4 R.F. Swindell, L.M. Zaborowski und J.M. Shreeve, Inorg. Chem. <u>1971</u>, 1635.
- 5 T.P. Forshaw und A.E. Tipping, Chem. Comm. 1969, 816.
- 6 K. Burger, W. Thenn und A. Gieren, Angew. Chem. <u>86</u>, 481 (1974); Angew. Chem., internat. Edit. <u>13</u>, 474 (1974).
- 7 K. Burger, H. Schickaneder und W. Thenn, Tetrahedron Lett. <u>1975</u>, 1125.
- 8 S.E. Armstrong und A.E. Tipping, J.C.S. Perkin I, <u>1975</u>, 538.
- 9 K. Burger, W. Thenn, R. Rauh, H. Schickaneder und A. Gieren, Chem. Ber. <u>108</u>, 1460 (1975).
- 10 A. Gieren, P. Narayanan, K. Burger und W. Thenn, Angew. Chem. <u>86</u>, 482 (1974); Angew. Chem., internat. Edit. <u>13</u>, 475 (1974).
- 11 K. Burger, H. Schickaneder und A. Meffert, Z. Naturforsch. <u>30b</u>, im Druck.
- 12 K. Burger, W. Thenn und H. Schickaneder, J. Fluorine Chem. <u>6</u>, 59 (1975).
- 13 F.J. Weigert, J. Org. Chem. <u>37</u>, 1314 (1972) und dort zit. Lit.
- 14 W.J. Middleton und C.G. Krespan, J. Org. Chem. 30, 1398 (1965).
- 15 N.P. Gambaryan, E.M. Rokhlin, Yu.V. Zeifman, Ching-Yun und I.L. Knunyants, Angew. Chem. <u>78</u>, 1008 (1966); Angew. Chem., internat. Edit. 5, 947 (1966) und dort zit. Lit.
- 16 K. Burger und H. Schickaneder, unveröffentl. Ergebnisse.
- 17 K. Burger und J. Fehn, Liebigs Ann. Chem. 757, 9 (1972).
- 18 K. Burger, W. Thenn und J. Fehn, Chem. Ber. <u>107</u>, 1526 (1974).
- 19 Literaturzusammenfassung siehe: I.O. Sutherland in E.F. Mooney "Annual Reports on NMR Spectroscopy" Vol 4, <u>1971</u>, Academic Press S. 156 ff.
- 20 Bereits das Erhitzen von ca. 50 mg (VI) in Substanz auf 100°C (Badtemperatur) führte zu einer sehr heftigen Explosion.